Self Knowledge Distillation (2024)


Seco*kD: Aligning Large Language Models for In-Context Learning with Fewer Shots

Jun 20, 2024

Weixing Wang, Haojin Yang, Christoph Meinel

Previous studies have shown that demonstrations can significantly help Large Language Models (LLMs ) perform better on the given tasks. However, this so-called In-Context Learning ( ICL ) ability is very sensitive to the presenting context, and often dozens of demonstrations are needed. In this work, we investigate if we can reduce the shot number while still maintaining a competitive performance. We present Seco*kD, a self-Knowledge Distillation ( KD ) training framework that aligns the student model with a heavily prompted variation, thereby increasing the utilization of a single demonstration. We experiment with the Seco*kD across three LLMs and six benchmarks focusing mainly on reasoning tasks. Results show that our method outperforms the base model and Supervised Fine-tuning ( SFT ), especially in zero-shot and one-shot settings by 30% and 10%, respectively. Moreover, Seco*kD brings little negative artifacts when evaluated on new tasks, which is more robust than Supervised Fine-tuning.

* preprint

ViaSelf Knowledge Distillation (2)

Access Paper or Ask Questions

Self-Distillation for Model Stacking Unlocks Cross-Lingual NLU in 200+ Languages

Jun 18, 2024

Fabian David Schmidt, Philipp Borchert, Ivan Vulić, Goran Glavaš

LLMs have become a go-to solution not just for text generation, but also for natural language understanding (NLU) tasks. Acquiring extensive knowledge through language modeling on web-scale corpora, they excel on English NLU, yet struggle to extend their NLU capabilities to underrepresented languages. In contrast, machine translation models (MT) produce excellent multilingual representations, resulting in strong translation performance even for low-resource languages. MT encoders, however, lack the knowledge necessary for comprehensive NLU that LLMs obtain through language modeling training on immense corpora. In this work, we get the best both worlds by integrating MT encoders directly into LLM backbones via sample-efficient self-distillation. The resulting MT-LLMs preserve the inherent multilingual representational alignment from the MT encoder, allowing lower-resource languages to tap into the rich knowledge embedded in English-centric LLMs. Merging the MT encoder and LLM in a single model, we mitigate the propagation of translation errors and inference overhead of MT decoding inherent to discrete translation-based cross-lingual transfer (e.g., translate-test). Evaluation spanning three prominent NLU tasks and 127 predominantly low-resource languages renders MT-LLMs highly effective in cross-lingual transfer. MT-LLMs substantially and consistently outperform translate-test based on the same MT model, showing that we truly unlock multilingual language understanding for LLMs.

ViaSelf Knowledge Distillation (4)

Access Paper or Ask Questions

WaterMono: Teacher-Guided Anomaly Masking and Enhancement Boosting for Robust Underwater Self-Supervised Monocular Depth Estimation

Jun 19, 2024

Yilin Ding, Kunqian Li, Han Mei, Shuaixin Liu, Guojia Hou

Depth information serves as a crucial prerequisite for various visual tasks, whether on land or underwater. Recently, self-supervised methods have achieved remarkable performance on several terrestrial benchmarks despite the absence of depth annotations. However, in more challenging underwater scenarios, they encounter numerous brand-new obstacles such as the influence of marine life and degradation of underwater images, which break the assumption of a static scene and bring low-quality images, respectively. Besides, the camera angles of underwater images are more diverse. Fortunately, we have discovered that knowledge distillation presents a promising approach for tackling these challenges. In this paper, we propose WaterMono, a novel framework for depth estimation coupled with image enhancement. It incorporates the following key measures: (1) We present a Teacher-Guided Anomaly Mask to identify dynamic regions within the images; (2) We employ depth information combined with the Underwater Image Formation Model to generate enhanced images, which in turn contribute to the depth estimation task; and (3) We utilize a rotated distillation strategy to enhance the model's rotational robustness. Comprehensive experiments demonstrate the effectiveness of our proposed method for both depth estimation and image enhancement. The source code and pre-trained models are available on the project home page: https://github.com/OUCVisionGroup/WaterMono.

ViaSelf Knowledge Distillation (6)

Access Paper or Ask Questions

Unveiling Implicit Table Knowledge with Question-Then-Pinpoint Reasoner for Insightful Table Summarization

Jun 18, 2024

Kwangwook Seo, Jinyoung Yeo, Dongha Lee

Implicit knowledge hidden within the explicit table cells, such as data insights, is the key to generating a high-quality table summary. However, unveiling such implicit knowledge is a non-trivial task. Due to the complex nature of structured tables, it is challenging even for large language models (LLMs) to mine the implicit knowledge in an insightful and faithful manner. To address this challenge, we propose a novel table reasoning framework Question-then-Pinpoint. Our work focuses on building a plug-and-play table reasoner that can self-question the insightful knowledge and answer it by faithfully pinpointing evidence on the table to provide explainable guidance for the summarizer. To train a reliable reasoner, we collect table knowledge by guiding a teacher LLM to follow the coarse-to-fine reasoning paths and refine it through two quality enhancement strategies to selectively distill the high-quality knowledge to the reasoner. Extensive experiments on two table summarization datasets, including our newly proposed InsTaSumm, validate the general effectiveness of our framework.

* work in progress

ViaSelf Knowledge Distillation (8)

Access Paper or Ask Questions

Lightweight Model Pre-training via Language Guided Knowledge Distillation

Jun 17, 2024

Mingsheng Li, Lin Zhang, Mingzhen Zhu, Zilong Huang, Gang Yu, Jiayuan Fan, Tao Chen

This paper studies the problem of pre-training for small models, which is essential for many mobile devices. Current state-of-the-art methods on this problem transfer the representational knowledge of a large network (as a Teacher) into a smaller model (as a Student) using self-supervised distillation, improving the performance of the small model on downstream tasks. However, existing approaches are insufficient in extracting the crucial knowledge that is useful for discerning categories in downstream tasks during the distillation process. In this paper, for the first time, we introduce language guidance to the distillation process and propose a new method named Language-Guided Distillation (LGD) system, which uses category names of the target downstream task to help refine the knowledge transferred between the teacher and student. To this end, we utilize a pre-trained text encoder to extract semantic embeddings from language and construct a textual semantic space called Textual Semantics Bank (TSB). Furthermore, we design a Language-Guided Knowledge Aggregation (LGKA) module to construct the visual semantic space, also named Visual Semantics Bank (VSB). The task-related knowledge is transferred by driving a student encoder to mimic the similarity score distribution inferred by a teacher over TSB and VSB. Compared with other small models obtained by either ImageNet pre-training or self-supervised distillation, experiment results show that the distilled lightweight model using the proposed LGD method presents state-of-the-art performance and is validated on various downstream tasks, including classification, detection, and segmentation. We have made the code available at https://github.com/mZhenz/LGD.

ViaSelf Knowledge Distillation (10)

Access Paper or Ask Questions

Self-Knowledge Distillation for Learning Ambiguity

Jun 14, 2024

Hancheol Park, Soyeong Jeong, Sukmin Cho, Jong C. Park

Recent language models have shown remarkable performance on natural language understanding (NLU) tasks. However, they are often sub-optimal when faced with ambiguous samples that can be interpreted in multiple ways, over-confidently predicting a single label without consideration for its correctness. To address this issue, we propose a novel self-knowledge distillation method that enables models to learn label distributions more accurately by leveraging knowledge distilled from their lower layers. This approach also includes a learning phase that re-calibrates the unnecessarily strengthened confidence for training samples judged as extremely ambiguous based on the distilled distribution knowledge. We validate our method on diverse NLU benchmark datasets and the experimental results demonstrate its effectiveness in producing better label distributions. Particularly, through the process of re-calibrating the confidence for highly ambiguous samples, the issue of over-confidence when predictions for unseen samples do not match with their ground-truth labels has been significantly alleviated. This has been shown to contribute to generating better distributions than the existing state-of-the-art method. Moreover, our method is more efficient in training the models compared to the existing method, as it does not involve additional training processes to refine label distributions.

* 9 pages, 5 figures

ViaSelf Knowledge Distillation (12)

Access Paper or Ask Questions

Self-Distillation Prototypes Network: Learning Robust Speaker Representations without Supervision

Jun 17, 2024

Yafeng Chen, Siqi Zheng, Hui Wang, Luyao Cheng, Qian Chen, Shiliang Zhang, Wen Wang

Training speaker-discriminative and robust speaker verification systems without explicit speaker labels remains a persisting challenge. In this paper, we propose a new self-supervised speaker verification approach, Self-Distillation Prototypes Network (SDPN), which effectively facilitates self-supervised speaker representation learning. SDPN assigns the representation of the augmented views of an utterance to the same prototypes as the representation of the original view, thereby enabling effective knowledge transfer between the views. Originally, due to the lack of negative pairs in the SDPN training process, the network tends to align positive pairs very closely in the embedding space, a phenomenon known as model collapse. To alleviate this problem, we introduce a diversity regularization term to embeddings in SDPN. Comprehensive experiments on the VoxCeleb datasets demonstrate the superiority of SDPN in self-supervised speaker verification. SDPN sets a new state-of-the-art on the VoxCeleb1 speaker verification evaluation benchmark, achieving Equal Error Rate 1.80%, 1.99%, and 3.62% for trial VoxCeleb1-O, VoxCeleb1-E and VoxCeleb1-H respectively, without using any speaker labels in training.

ViaSelf Knowledge Distillation (14)

Access Paper or Ask Questions

Guiding Frame-Level CTC Alignments Using Self-knowledge Distillation

Jun 12, 2024

Eungbeom Kim, Hantae Kim, Kyogu Lee

Transformer encoder with connectionist temporal classification (CTC) framework is widely used for automatic speech recognition (ASR). However, knowledge distillation (KD) for ASR displays a problem of disagreement between teacher-student models in frame-level alignment which ultimately hinders it from improving the student model's performance. In order to resolve this problem, this paper introduces a self-knowledge distillation (SKD) method that guides the frame-level alignment during the training time. In contrast to the conventional method using separate teacher and student models, this study introduces a simple and effective method sharing encoder layers and applying the sub-model as the student model. Overall, our approach is effective in improving both the resource efficiency as well as performance. We also conducted an experimental analysis of the spike timings to illustrate that the proposed method improves performance by reducing the alignment disagreement.

* Accepted by Interspeech 2024

ViaSelf Knowledge Distillation (16)

Access Paper or Ask Questions

RaD-Net 2: A causal two-stage repairing and denoising speech enhancement network with knowledge distillation and complex axial self-attention

Jun 11, 2024

Mingshuai Liu, Zhuangqi Chen, Xiaopeng Yan, Yuanjun Lv, Xianjun Xia, Chuanzeng Huang, Yijian Xiao, Lei Xie

In real-time speech communication systems, speech signals are often degraded by multiple distortions. Recently, a two-stage Repair-and-Denoising network (RaD-Net) was proposed with superior speech quality improvement in the ICASSP 2024 Speech Signal Improvement (SSI) Challenge. However, failure to use future information and constraint receptive field of convolution layers limit the system's performance. To mitigate these problems, we extend RaD-Net to its upgraded version, RaD-Net 2. Specifically, a causality-based knowledge distillation is introduced in the first stage to use future information in a causal way. We use the non-causal repairing network as the teacher to improve the performance of the causal repairing network. In addition, in the second stage, complex axial self-attention is applied in the denoising network's complex feature encoder/decoder. Experimental results on the ICASSP 2024 SSI Challenge blind test set show that RaD-Net 2 brings 0.10 OVRL DNSMOS improvement compared to RaD-Net.

* Accepted by Interspeech 2024

ViaSelf Knowledge Distillation (18)

Access Paper or Ask Questions

Vision Language Modeling of Content, Distortion and Appearance for Image Quality Assessment

Jun 14, 2024

Fei Zhou, Zhicong Huang, Tianhao Gu, Guoping Qiu

The visual quality of an image is confounded by a number of intertwined factors including its semantic content, distortion characteristics and appearance properties such as brightness, contrast, sharpness, and colourfulness. Distilling high level knowledge about all these quality bearing attributes is crucial for developing objective Image Quality Assessment (IQA).While existing solutions have modeled some of these aspects, a comprehensive solution that involves all these important quality related attributes has not yet been developed. In this paper, we present a new blind IQA (BIQA) model termed Self-supervision and Vision-Language supervision Image QUality Evaluator (SLIQUE) that features a joint vision-language and visual contrastive representation learning framework for acquiring high level knowledge about the images semantic contents, distortion characteristics and appearance properties for IQA. For training SLIQUE, we have developed a systematic approach to constructing a first of its kind large image database annotated with all three categories of quality relevant texts. The Text Annotated Distortion, Appearance and Content (TADAC) database has over 1.6 million images annotated with textual descriptions of their semantic contents, distortion characteristics and appearance properties. The method for constructing TADAC and the database itself will be particularly useful for exploiting vision-language modeling for advanced IQA applications. Extensive experimental results show that SLIQUE has superior performances over state of the art, demonstrating the soundness of its design principle and the effectiveness of its implementation.

ViaSelf Knowledge Distillation (20)

Access Paper or Ask Questions

Self Knowledge Distillation (2024)
Top Articles
Latest Posts
Article information

Author: Chrissy Homenick

Last Updated:

Views: 6118

Rating: 4.3 / 5 (54 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Chrissy Homenick

Birthday: 2001-10-22

Address: 611 Kuhn Oval, Feltonbury, NY 02783-3818

Phone: +96619177651654

Job: Mining Representative

Hobby: amateur radio, Sculling, Knife making, Gardening, Watching movies, Gunsmithing, Video gaming

Introduction: My name is Chrissy Homenick, I am a tender, funny, determined, tender, glorious, fancy, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.